Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves
نویسندگان
چکیده
Mitochondria play an essential role in reactive oxygen species (ROS) signal transduction in plants. Redox regulation is an essential feature of mitochondrial function, with thioredoxin (Trx), involved in disulphide/dithiol interchange, playing a prominent role. To explore the participation of mitochondrial PsTrxo1, Mn-superoxide dismutase (Mn-SOD), peroxiredoxin (PsPrxII F), and alternative oxidase (AOX) under salt stress, their transcriptional and protein levels were analysed in pea plants growing under 150 mM NaCl for a short and a long period. The activities of mitochondrial Mn-SOD and Trx together with the in vivo activities of the alternative pathway (AP) and the cytochrome pathway (CP) were also determined, combined with the characterization of the plant physiological status as well as the mitochondrial oxidative indicators. The analysis of protein and mRNA levels and activities revealed the importance of the post-transcriptional and post-translational regulation of these proteins in the response to salt stress. Increases in AOX protein amount correlated with increases in AP capacity, whereas in vivo AP activity was maintained under salt stress. Similarly, Mn-SOD activity was also maintained. Under all the stress treatments, photosynthesis, stomatal conductance, and CP activity were decreased although the oxidative stress in leaves was only moderate. However, an increase in lipid peroxidation and protein oxidation was found in mitochondria isolated from leaves under the short-term salinity conditions. In addition, an increase in mitochondrial Trx activity was produced in response to the long-term NaCl treatment. The results support a role for PsTrxo1 as a component of the defence system induced by NaCl in pea mitochondria, providing the cell with a mechanism by which it can respond to changing environment protecting mitochondria from oxidative stress together with Mn-SOD, AOX, and PrxII F.
منابع مشابه
Mitochondrial and nuclear localization of a novel pea thioredoxin: identification of its mitochondrial target proteins.
Plants contain several genes encoding thioredoxins (Trxs), small proteins involved in the regulation of the activity of many enzymes through dithiol-disulfide exchange. In addition to chloroplastic and cytoplasmic Trx systems, plant mitochondria contain a reduced nicotinamide adenine dinucleotide phosphate-dependent Trx reductase and a specific Trx o, and to date, there have been no reports of ...
متن کاملResponses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress
The possible involvement of activated oxygen species in the mechanism of damage by NaClstress was studied in leaves of two varieties of pea (Pisum sativum L.) cv. EC 33866 and Puget. Thelevel of lipid peroxidation, enzyme activity of superoxide dismutase (SOD, EC 1.15.1.1), ascorbateperoxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), dihydroascorbate reductase(DHAR, 1.8.5.1)...
متن کاملRole of nitrogen content of pea (Pisum sativum L.) on pea aphid (Acyrthosiphon pisum Harris) establishment
The leaf nitrogen content is generally accepted as an indicator of food quality and as a factor affecting host selection by phytophagous insects. The alate pea aphids (Acyrthosiphon pisum Harris, Aphididae) were given a choice among non-nodulated pea plants (Pisum sativum L.) supplied with one of four nitrate-N levels (0, 3, 15 and 30 mM). When whole plants were exposed to aphids for 7 days, th...
متن کاملAntioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants.
In this work the influence of the nodulation of pea (Pisum sativum L.) plants on the oxidative metabolism of different leaf organelles from young and senescent plants was studied. Chloroplasts, mitochondria, and peroxisomes were purified from leaves of nitrate-fed and Rhizobium leguminosarum-nodulated pea plants at two developmental stages (young and senescent plants). In these cell organelles,...
متن کاملEffect of growth in highly salinized media on the enzymes of the photosynthetic apparatus in pea seedlings.
The rate of chlorophyll formation in initially etiolated pea seedlings (Pisum sativum) that are growing in the light in salinized media is slower than in similar plants not subjected to salinity. However, the final steady state level of chlorophyll is the same under both conditions. Growth under saline conditions did not change the ratio of dry weight to wet weight in the plant leaves nor the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 62 شماره
صفحات -
تاریخ انتشار 2011